Right option is (d) 46
To explain I would say: We know
\(f(x)=7x^2-6x+1\)
\(f'(x)=14x-6\)
\(f”(x)=14\)
\(f”'(x)=0\)
Thus for n>=3, the derivative of the function is 0.
As per the Taylor Series,
\(7x^2-6x+1=\sum_{n=0}^{\infty} \frac{f^n (2)(x-2)^n}{n!}\)
\(7x^2-6x+1=f(2)+f'(2)(x-2)+\frac{1}{2} f”(2) (x-2)^2+0\)
\(7x^2-6x+1=17+22(x-2)+7(x-2)^2\)
Thus, a=17, b=22, c=7
a+b+c=46
Thus the answer is 46.