The correct option is (c) \(\sum_{n=0}^{\infty} \frac{(-6)^n}{n!} e^{24} (x+4)^n\)
Best explanation: We start by finding the derivative of the given function,
\(f(x)=e^{-6x}\)
\(f'(x) = -6e^{-6x}\)
\(f”(x) = 36e^{-6x}\)
\(f”'(x) = -216e^{-6x}\)
\(f””(x) = 1296e^{-6x}\)
Thus we take derivative of maximum to the fourth order.
Thus according to formula of Taylor series about x=-4
\(e^{-6x}=\sum_{n=0}^{\infty} \frac{f^n (-4)}{n!} (x+4)^n\)
\(e^{-6x}=\sum_{n=0}^{\infty} \frac{(-6)^n}{n!} e^{24} (x+4)^n\)
Thus the Taylor Series is given by
\(e^{-6x}=\sum_{n=0}^{\infty} \frac{(-6)^n}{n!} e^{24} (x+4)^n\).