Correct answer is (b) \(\frac{2a}{a^2+ω^2}\)
The explanation is: The given two-sided exponential function f(t) = e^-a|t|, a>0 can be expressed as
\(
f(t)=\begin{cases}
e^{-at} &\text{\(t≥0\)} \\
e^{at} &\text{\(t≤0\)} \\
\end{cases}\)
The Fourier transform is
\(F(ω) = \int_{-∞}^∞ f(t)e^{-jωt} \,dt = \int_{-∞}^0 f(t)e^{-jωt} \,dt + \int_0^∞ f(t)e^{-jωt} \,dt\)
\(F(ω) = \frac{1}{a+jω} + \frac{1}{a-jω} = \frac{2a}{a^2+ω^2}\).