The correct answer is (c) \(\frac{2}{ω} sin(\frac{ωτ}{2})\)
Easy explanation: Gate function is defined as
\(
G(t)=\begin{cases}
1 &\text{\(|t|<\frac{τ}{2}\)} \\
0 &\text{elsewhere} \\
\end{cases} \)
The fourier transform is \(F(ω) = \int_{-∞}^∞ f(t)e^{-jωt} \,dt = \int_{-τ/2}^{τ/2} e^{-jωt} \,dt = \frac{2}{ω} sin(\frac{ωτ}{2})\).