The correct answer is (c) \(\frac{X[k]+X^* [-k]}{2}\)
The explanation: Re{x (t)} = \(\frac{x(t)+x^* (-t)}{2}\)
The Fourier coefficient of x* (t) is
X1[k] = \(\frac{1}{T}\) ∫ x* (t)e^-jkωt dt = \(X_1^*\) [-k]
Or, \(X_1^*\) [k] = \(\frac{1}{T}\) ∫ x(t)e^jkωt dt = X [-k]
So, X1[k] = \(X_1^*\) [-k]
∴ Z[k] = \(\frac{X[k]+X^* [-k]}{2}\).