The correct option is (b) \(\frac{1}{T_0} ∑_{n=-∞}^∞ exp(-\frac{jπnt}{T_0})\)
The explanation: s (t) = \(∑_{n=-∞}^∞ C_n e^{jnω_0 t}\), where ω0=(2T/T0)
And Cn = \(\frac{1}{T_0} \displaystyle\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} δ(t) e^{-jnω_0 t} \,dt\)
= \(\frac{1.e^{-jnω_0 t}}{T_0}\)
So, Fourier series representation = \(\frac{1}{T_0} ∑_{n=-∞}^∞ exp(-\frac{jπnt}{T_0})\).