Right choice is (a) \(\frac{z}{z-a}\)
The explanation is: Given x(n) = a^n u(n)
We know that \(
u(n)=\begin{cases}
1 &\text{\(n≥0\)} \\
0 &\text{\(n<0\)} \\
\end{cases}\)
X(Z) = \(\sum\limits_{n=-\infty}^{\infty} x(n) z^{-n} = \sum\limits_{n=-\infty}^{\infty} a^n u(n) z^{-n}\)
= \(\sum\limits_{n=0}^{∞} a^n (1) z^{-n} = \sum\limits_{n=0}^{∞} (az^{-1})^n = (1-az^{-1})^{-1}\)
= \(\frac{1}{1-az^{-1}} = \frac{z}{z-a}\).