Right choice is (b) 30 kΩ and 16 V
To elaborate: When RL = 10 kΩ and VAB = 4 V
Current in the circuit I = \(\frac{V_{AB}}{R_L} = \frac{4}{10}\) = 0.4 mA
Thevenin voltage is given by VTH = I (RTH + RL)
= 0.4(RTH + 10)
= 0.4RTH + 4
Similarly, for RL = 2 kΩ and VAB = 1 V
So, I = \(\frac{1}{2}\) = 0.5 mA
VTH = 0.5(RTH + 2)
= 0.5 RTH + 1
∴ 0.1RTH = 3
Or, RTH = 30 kΩ
And VTH = 12 + 4 = 16 V.