The correct answer is (c) 4 rad/s
To explain: Z(s) t = \(\frac{(Ls)\frac{1}{Cs}}{Ls + \frac{1}{Cs}} = \frac{Ls}{LCs^2+1} \)
Putting s = jω, we get, Z (jω) = \(\frac{jωL}{1 -LCω^2} \)
For ideal current source, Z (jω) = ∞
Or, 1 – LCω^2 = 0
Or, ω = \(\frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\frac{1}{16}×1}}\) = 4 rad/s.