The correct option is (c) y12 = –\(\frac{h_{12}}{h_{11}}\)
Explanation: We know that the short circuit admittance parameters can be expressed in terms of voltages and currents as,
I1 = y11 V1 + y12 V2 ……… (1)
I2 = y21 V1 + y22 V2 ………. (2)
And the Hybrid parameters can be expressed in terms of voltages and currents as,
V1 = h11 I1 + h12 V2 ………. (3)
I2 = h21 I1 + h22 V2 ……….. (4)
Now, (3) and (4) can be rewritten as,
I1 = \(\frac{V_1}{h_{11}} – \frac{h_{12} V_2}{h_{11}}\) ………. (5)
And I2 = \(\frac{h_{21} V_1}{h_{11}} + \left(- \frac{h_{21} h_{12}}{h_{11}} + h_{22}\right) V_2\) ………. (6)
∴ Comparing (1), (2) and (5), (6), we get,
y11 = \(\frac{1}{h_{11}} \)
y12 = –\(\frac{h_{12}}{h_{11}}\)
y21 = \(\frac{h_{21}}{h_{11}}\)
y22 = \(\left(- \frac{h_{21} h_{12}}{h_{11}} + h_{22}\right)\).