Correct choice is (c) 3
To explain: At the midpoint ➔ CASE 1:
B1=\(\frac {\mu_o I_1}{2\pi d} – \frac {\mu_o I_2}{2\pi d}\)
B1=\(\frac {\mu_o (I_1 – I_2)}{2\pi d}\)=50 μT
At the midpoint ➔ CASE 2:
B2=\(\frac {\mu_o I_1}{2\pi d} + \frac {\mu_o I_2}{2\pi d}\)
B1=\(\frac {\mu_o (I_1 + I_2)}{2\pi d}\)=100 μT
\(\frac {B1}{B2}=\frac {I_1-I_2}{I_1+I_2}=\frac {50 \mu T}{100 \mu T}\)
\(\frac {I_1-I_2}{I_1+I_2}=\frac {1}{2}\)
Using componendo and Dividendo rule:
\(\frac {(I_1+I_2) \, + \, (I_1-I_2)}{(I_1-I_2) \, – \, (I_1+I_2)}=\frac {1+2}{1-2}\)
\(\frac {I_1}{-I_2}=\frac {3}{-1}\)
Therefore, \(\frac {I_1}{I_2}\)=3