Correct answer is (b) 393 μT
For explanation: Field along axis of coil → B =\( \frac {\mu_o IR^2}{2 \big ( (R^2 \, + \, x^2)^{\frac {3}{2}} \big ] } \)
At the coil of the coil → B1 = \( \frac {\mu_o I}{2R}\)
\(\frac {B_1}{B} = \frac {\mu_o I}{2R} \, \times \, \frac {2 \big ( (R^2 \, + \, x^2)^{\frac {3}{2}} \big ] }{\mu_o IR^2} = \frac {2 \big ( (R^2 \, + \, x^2)^{\frac {3}{2}} \big ] }{R^3}\)
B1 = \(\frac {48 [4^2 + 7^2]^{\frac {3}{2}}}{4^3}\)
B1 = \(\frac {48 \times (65)^{\frac {3}{2}}}{4^3}\)
B1 = 131.01 × 3
B1 = 393.03 = 393 μT