Correct option is (b) 4
For explanation: The given equations are (5+k)x-3y+15 and (k-1)x-y+19.
Here, a1=5+k, b1=-3, c1=15 and a2=k-1, b2=-1, c2=19
Lines are parallel, so \(\frac {a_1}{a_2} = \frac {b_1}{b_2} \ne \frac {c_1}{c_2} \)
Now, \(\frac {a_1}{a_2} = \frac {5+k}{k-1}, \frac {b_1}{b_2} =\frac {-3}{-1}\) = 3, \(\frac {c_1}{c_2} = \frac {15}{19} \)
\(\frac {5+k}{k-1}\) = 3
5+k=3(k-1)
5+k=3k-3
5+3=3k-k
2k=8
k=4