The correct option is (b) 2
To explain: The given equations are x+ky+3 and (k-1)x+4y+6.
Here, a1=1, b1=k, c1=3 and a2=k-1, b2=4, c2=6
Lines are coincident, so \(\frac {a_1}{a_2} =\frac {b_1}{b_2} =\frac {c_1}{c_2}\)
Now, \(\frac {a_1}{a_2} = \frac {1}{k-1}, \frac {b_1}{b_2} =\frac {k}{4}, \frac {c_1}{c_2} =\frac {3}{6}\)
\(\frac {1}{k-1}=\frac {k}{4}=\frac {1}{2}\)
2k=4
k=2