Right answer is (b) 7.794 cm
The best I can explain: Here, ABC is an equilateral triangle and AD is the altitude of the triangle.
Now, in ∆ADB
AB^2 = AD^2 + BD^2
9^2 = AD^2 + 4.5^2 (Since, AD is the altitude of the triangle it will bisect BC)
AD^2 = 81 – 20.25
AD^2 = 60.75
AD = √60.75 = \(\frac {9\sqrt {3}}{2}\) cm = 7.794 cm