Right answer is (c) \(\frac{n(n+1)(2n+1)}{6}\)
Best explanation: Sum of cubes of first n terms = 1^3+2^3+3^3+……………+n^3
(k + 1)^4–k^4 = 4k^3 + 6k^2 + 4k + 1.
On substituting k = 1, 2, 3, ……, n and adding we get,
4n^3+n^4+6n^2+4n = \(4\sum_{i=0}^n k^3 + 6 \sum_{i=0}^n k^2 + 4 \sum_{i=0}^n k + n\)
4n^3+n^4+6n^2+4n = \(4\sum_{i=0}^n k^3 + 6\frac{(n(n+1)(2n+1))}{6} + 4\frac{n(n+1)}{2} + n\)
\(\sum_{i=0}^n k^3 = (\frac{n(n+1)}{2})^2\).