Right option is (c) \(\frac{n(n+1)(2n+1)}{6}\)
Explanation: Sum of squares of first n terms = 1^2+2^2+3^2+……………+n^2
k^3–(k – 1)^3=3k^2–3k + 1
On substituting k = 1, 2, 3, ……, n and adding we get,
n^3 = 3 \(\sum_{i=0}^n k^2 – 3 \sum_{i=0}^n k + n\)
n^3 = 3 \(\sum_{i=0}^n k^2 – 3 \frac{n(n+1)}{2}\) + n
\(\sum_{i=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}\).