The correct choice is (a) 1/e
Explanation: We have, y = x^(1/(1 – x))
So, log y = (log x)/(1 – x)
So, \(\lim\limits_{x \rightarrow 1}\)log y = \(\lim\limits_{x \rightarrow 1}\)(log x)/(1 – x)
Now, using L’Hospital’s rule,
\(\lim\limits_{x \rightarrow 1}\)log y = \(\lim\limits_{x \rightarrow 1}\)((\(\frac{1}{x})\) / – 1)
=>, \(\lim\limits_{x \rightarrow 1}\)log y = -1
So, \(\lim\limits_{x \rightarrow 1} x^{\frac{1}{1-x}}\) = 1/e.