The correct choice is (c) \(\frac{a^x (ln\, a-1)}{e^x}\)
The best explanation: Using quotient rule, we know that, \(\frac{d}{dx} (\frac{f}{g}) = \frac{g.\frac{d}{dx} (f) – f.\frac{d}{dx}(g)}{g^2}\)
Here, f = a^x and g = e^x
\(\frac{d}{dx} (\frac{a^x}{e^x}) = \frac{e^x.\frac{d}{dx}(a^x)-a^x.\frac{d}{dx}(e^x)}{(e^x)(e^x)}\)
\(\frac{d}{dx} (\frac{a^x}{e^x}) = \frac{e^x a^x ln\, a-a^x e^x}{(e^x)(e^x)}\)
\(\frac{d}{dx} (\frac{a^x}{e^x}) = \frac{a^x (ln \,a-1)}{e^x}\)