Right choice is (d) 2e^x.cos x
Explanation: We need to use product rule in both the terms to get the answer.
\(\frac{d}{dx}\) (f.g) = g.\(\frac{d}{dx}\) (f)+ f.\(\frac{dy}{dx}\) (g)
\(\frac{d}{dx}\) (e^x sin x + e^x cos x) = (e^x.\(\frac{d}{dx}\) (sin x) + sin x.\(\frac{d}{dx}\) (e^x)) + (e^x.\(\frac{d}{dx}\) (cos x) + cos x.\(\frac{d}{dx}\) (e^x))
\(\frac{d}{dx}\) (e^x sin x + e^x cos x) =(e^x.cos x + sin x . e^x) + (e^x.(-sin x) + cos x.e^x)
\(\frac{d}{dx}\) (e^x sin x + e^x cos x) = e^x.cos x + sin x . e^x – e^x.sin x + cos x.e^x
\(\frac{d}{dx}\) (e^x sin x + e^x cos x) = 2e^x.cos x