Right option is (d) \(\frac{2t(tan2t+tsec^2 2t)}{3 cos3t}\)
To explain I would say: Given that, x=sin3t and y=t^2 tan2t
\(\frac{dx}{dt}\)=3 cos3t
By using u.v rule, we get
\(\frac{dy}{dt}\)=\(\frac{d}{dx} \,(t^2) \,tan2t+\frac{d}{dx} \,(tan2t)\) t^2
\(\frac{dy}{dt}\)=2t tan2t+2t^2 sec^22t
\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{(2t \,tan2t+2t^2 \,sec^22t)}{3 \,cos3t}\)
∴\(\frac{dy}{dx}=\frac{2t(tan2t+tsec^2 \,2t)}{3 \,cos3t}\)