Correct choice is (c) \(\frac{2e^{x^4} (4x^4 logx+1)}{x}\)
Easy explanation: Consider y=2e^x^4 logx
\(\frac{dy}{dx}\)=\(\frac{d}{dx}\) (2e^x^4 logx)
Differentiating w.r.t x by using chain rule, we get
\(\frac{dy}{dx}\)=2(logx \(\frac{d}{dx} (e^{x^4})+e^{x^4}\frac{d}{dx}\) (logx))
\(\frac{dy}{dx}\)=\(2(logx.e^{x^4}\frac{d}{dx} {x^4}+e^{x^4}.\frac{1}{x})\)
\(\frac{dy}{dx}\)=\(2(logx.e^{x^4}.4x^3+e^{x^4}.\frac{1}{x})\)
\(\frac{dy}{dx}\)=\(2e^{x^4} (4x^3 logx+\frac{1}{x})\)
∴\(\frac{dy}{dx}=\frac{(2e^{x^4} (4x^4 logx+1))}{x}\)