Right answer is (c) cos^2t
The explanation is: Given that, x=log(tant) and y=log(sint)
\(\frac{dx}{dt}\)=\(\frac{1}{tant}.sec^2t=cott sec^2t\)
\(\frac{dy}{dt}=\frac{1}{sin \,t}.cos \,t=cot \,t\)
∴\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{cot\,t}{cot\,t sec^2t}=\frac{1}{sec^2t}=cos^2t\).