The correct option is (a) x+2y=11
The best explanation: Differentiating 2x^2+3y^2=3 w.r.t x, we get
4x+6y \(\frac{dy}{dx}\)=0
\(\frac{dy}{dx} = -\frac{2x}{3y}\)
\(\frac{dy}{dx}\)](3,4)=-\(\frac{2(3)}{3(4)}=-\frac{1}{2}\)
Therefore, the equation of the tangent at (3,4) is
y-y0=m(x-x0)
y-4=-\(\frac{1}{2}\) (x-3)
2(y-4)=-x+3
2y-8=-x+3
x+2y=11