The correct option is (d) 8e^2x+\(\frac{12}{(2x-3)^2}\)
To elaborate: Given that, y=2e^2x-3 log(2x-3)
\(\frac{dy}{dx}\)=4e^2x-3.\(\frac{1}{(2x-3)}\).2=4e^2x–\(\frac{6}{(2x-3)}\)
\(\frac{d^2 y}{dx^2}=\frac{d}{dx} (\frac{dy}{dx})\)=8e^2x+\(\frac{12}{(2x-3)^2}\)