The correct answer is (c) 2 sec^2x tanx (2 tanx+secx+3)
Explanation: Given that, y=tan^2x+3 tanx
\(\frac{dy}{dx}\)=2 tanx sec^2x+3 sec^2x=sec^2x (2 tanx+3)
By using the u.v rule, we get
\(\frac{d^2 y}{dx^2}=\frac{d}{dx}\) (sec^2x).(2 tanx+3)+\(\frac{d}{dx}\) (2 tanx+3).sec^2x
\(\frac{d^2 y}{dx^2}\)=2 sec^2x tanx (2 tanx+3)+sec^2x (2 secx tanx)
=2 sec^2x tanx (2 tanx+secx+3).