The correct option is (a) sin^-1(\(\frac{63}{65}\))
Best explanation: From ∆ABC, we get
cos^-1\((\frac{3}{5})\)=sin^-1\((\frac{4}{5})\)
∴sin^-1(\(\frac{5}{13}\))+cos^-1(\(\frac{3}{5}\))=sin^-1(\(\frac{5}{13}\))+sin^-1(\(\frac{4}{5}\))
=sin^-1\((\frac{5}{13}\sqrt{1-(\frac{4}{5})^2}+\frac{4}{5}\sqrt{1-(\frac{5}{13})^2})\)
=\(sin^{-1}(\frac{5}{13}×\frac{3}{5}+\frac{4}{5}×\frac{12}{13})=sin^{-1}(\frac{15+48}{65})=sin^{-1}(\frac{63}{65})\).