Right option is (c) tan^-1\((\frac{7}{9})\)
The best I can explain: Using the formula tan^-1x+tan^-1y=tan^-1\(\frac{x+y}{1-xy}\), we get
tan^-1(\(\frac{1}{3}\))+tan^-1(\(\frac{1}{5}\))=tan^-1\(\bigg(\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{3}×\frac{1}{5}}\bigg)\)
= \(tan^{-1}\bigg(\frac{\frac{8}{15}}{\frac{14}{15}}\bigg)=tan^{-1}(\frac{8}{15}×\frac{15}{14})=tan^{-1}(\frac{4}{7})\)
=\(tan^{-1}(\frac{1}{3})+tan^{-1}(\frac{1}{5})+tan^{-1}(\frac{1}{7})=tan^{-1}(\frac{4}{7})+tan^{-1}(\frac{1}{7})\)
=\(tan^{-1}\bigg(\frac{\frac{4}{7} + \frac{1}{7}}{1-\frac{4}{7}×\frac{1}{7}}\bigg) = tan^{-1}\bigg(\frac{\frac{5}{7}}{\frac{45}{49}}\bigg)=tan^{-1}(\frac{5}{7}×\frac{49}{45})\)
=tan^-1\((\frac{7}{9})\).