Correct answer is (b) f(x) = (g(x))^2
Easiest explanation: Let, D = \(\begin{vmatrix}0 & c & b \\c & 0 & a \\b & a & 0 \end {vmatrix}\)
Expanding D by the 1^st row we get,
D = – c\(\begin{vmatrix}c & a \\b & 0 \end {vmatrix}\) + b\(\begin{vmatrix}c & 0 \\b & a \end {vmatrix}\)
= – c(0 – ab) + b(ac – 0)
= 2abc
Now, we have adjoint of D = D’
= \(\begin{vmatrix}
\begin{vmatrix}0 & a\\ a & 0\\ \end{vmatrix} & – \begin{vmatrix}c & a\\ b & 0\\ \end{vmatrix} & \begin{vmatrix}c & 0\\ b & a\\ \end{vmatrix}\\
– \begin{vmatrix}c & b\\ a & 0\\ \end{vmatrix} & \begin{vmatrix}0 & b\\ b & 0\\ \end{vmatrix} & – \begin{vmatrix}0 & c\\ b & 0\\ \end{vmatrix} \\
\begin{vmatrix}c & b\\ 0 & a\\ \end{vmatrix} & – \begin{vmatrix}0 & b\\ c & a\\ \end{vmatrix} & \begin{vmatrix}0 & c\\ c & 0\\ \end{vmatrix} \\
\end{vmatrix}\)
Or, D’ = \(\begin{vmatrix}–a^2 & ab & ac \\ab & -b^2 & bc \\ac & bc & -c^2 \end {vmatrix}\)
Or, D’ = D^2
Or, D’ = D^2 = (2abc)^2