Right answer is (a) 352
To explain: Given that, A=\(\begin{bmatrix}2&5&9\\6&1&3\\4&8&2\end{bmatrix}\)
⇒|A|=\(\begin{vmatrix}2&5&9\\6&1&3\\4&8&2\end{vmatrix}\)
Evaluating along the first row, we get
∆=2\(\begin{vmatrix}1&3\\8&2\end{vmatrix}\)-5\(\begin{vmatrix}6&3\\4&2\end{vmatrix}\)+9\(\begin{vmatrix}6&1\\4&8\end{vmatrix}\)
∆=2(2-24)-5(12-12)+9(48-4)
∆=2(-22)-0+9(44)
∆=-44+9(44)=44(-1+9)=352