The correct option is (b) abc(a^3+b^3+c^3-abc)
For explanation I would say: Given that, A=\(\begin{bmatrix}c^2&cb&ca\\ab&a^2&-ac\\ab&bc&-b^2\end{bmatrix}\)
Taking c a, b common from R1, R2, R3 respectively, we get
Δ=abc\(\begin{bmatrix}c&b&a\\b&a&-c\\a&c&-b\end{bmatrix}\)
Δ=abc{(c(-ab+c^2)-b(-b^2+ac)+a(bc-a^2)
Δ=abc(-abc+c^3+b^3-abc+abc-a^3)
Δ=abc(a^3+b^3+c^3-abc).