Right answer is (d) \(\begin{bmatrix}1&0&0\\1&1&0\\1&1&1\end{bmatrix}\)
To elaborate: Given that, A=\(\begin{bmatrix}cosx&-sinx&cosx\\sinx&cosx&sinx \end{bmatrix}\)
∴ A’=\(\begin{bmatrix}cosx&sinx\\-sinx&cosx\\cosx&sinx \end{bmatrix}\)
⇒A’ A=\(\begin{bmatrix}cosx&sinx\\-sinx&cosx\\cosx&sinx \end{bmatrix}\)\(\begin{bmatrix}cos x &-sinx&cosx\\sinx&cosx &sinx \end{bmatrix}\)
=\(\begin{bmatrix}cos^2x+sin^2x&-sinx cosx+sinx cosx&cos^2x+sin^2x\\-sinx cosx+sinx cosx&sin^2x+cos^2x&-sinx cosx+cosx sinx\\cos^2x+sin^2 x&-cosx sinx+sinx cosx &cos^2x+sin^2x \end{bmatrix}\)
=\(\begin{bmatrix}1&0&1\\0&1&0\\1&0&1\end{bmatrix}\)