The correct answer is (a) \(Log \left|\frac{x+1}{x+2}\right|+ C\)
The best I can explain: It is a proper rational function. Therefore,
\(\frac{1}{(x+1)(x+2)} = \frac{A}{(x+1)} + \frac{B}{(x+2)}\)
Where real numbers are determined, 1 = A(x+2) + B(x+1), Equating coefficients of x and the constant term, we get A+B = 0 and 2A+B = 1. Solving it we get A=1, and B=-1.
Thus, it simplifies to, \(\frac{1}{(x+1)} + \frac{-1}{(x+2)} = \int \frac{dx}{(x+1)} – \int \frac{dx}{(x+2)}\).
= log|x+1| – log|x+2| + C
= \(Log \left|\frac{x+1}{x+2}\right|+ C\).