Correct choice is (c) \(\frac{(cos^{-1}x)^2}{2}+C\)
For explanation I would say: Let cos^-1x=t
Differentiating w.r.t x, we get
\(\frac{1}{\sqrt{1-x^2}} dx=dt\)
∴\(\int \frac{cos^{-1}x}{\sqrt{1-x^2}} dx=\int t dt\)
=\(\frac{t^2}{2}\)
Replacing t with cos^-1x,we get
\(\int \frac{cos^{-1}x}{\sqrt{1-x^2}} dx=\frac{(cos^{-1}x)^2}{2}+C\)