Correct choice is (b) \(\frac{2}{3} (e^{27}-e^8)\)
Explanation: I=\(\int_2^3 \,2x^2 \,e^{x^3} \,dx\)
Let x^3=t
Differentiating w.r.t x, we get
3x^2 dx=dt
x^2 dx=\(\frac{dt}{3}\)
The new limits
When x=2, t=8
When x=3, t=27
∴\(\int_2^3 \,2x^2 \,e^{x^3} \,dx=\frac{2}{3} \int_8^{27} \,e^t \,dt\)
=\(\frac{2}{3} [e^t]_8^{27}=\frac{2}{3} (e^{27}-e^8).\)