The correct choice is (b) \(\frac{9}{2}\)
To explain: I=\(\int_1^4 \frac{\sqrt{x}+3}{\sqrt{x}} \,dx\)
Let \(\sqrt{x}+3=t\)
Differentiating w.r.t x, we get
\(\frac{1}{2\sqrt{x}} \,dx=dt\)
\(\frac{1}{\sqrt{x}} \,dx=2 \,dt\)
The new limits
When x=1,t=4
When x=4,t=5
∴\(\int_1^4 \frac{\sqrt{x}+3}{\sqrt{x}} dx=\int_4^5 \,t \,dt\)
=\([\frac{t^2}{2}]_4^5=\frac{5^2-4^2}{2}=\frac{9}{2}\)