Right answer is (b) \(\sqrt{2}\)
For explanation: The projection of vector \(\vec{b}\) on the vector \(\vec{b}\) is given by \(\frac{1}{|\vec{a}|} (\vec{a}.\vec{b})\)
\(|\vec{a}|=\sqrt{(1)^2+(-1)^2+(-\sqrt{2})^2}=\sqrt{1+1+2}=\sqrt{4}\)=2
Also, \(\vec{a}.\vec{b}=2(1)+2\sqrt{2} \,(-1)-2(-\sqrt{2})=2-2\sqrt{2}+2\sqrt{2}\)=2
Therefore, the projection of vector \(\hat{i}-\hat{j}-\sqrt{2} \,\hat{k}\) on the vector \(\vec{b}=2\hat{i}+2\sqrt{2}\hat{j}-2\hat{k}\) is
\(\frac{1}{|\vec{a}|} (\vec{a}.\vec{b})=\frac{1}{2}\) (2)=1.