Right option is (c) \(3\hat{i}-19\hat{j}-14\hat{k}\)
The explanation: Given that, \(\vec{a}=2\hat{i}+4\hat{j}\) and \(\vec{b}=3\hat{i}-\hat{j}+2\hat{k}\)
Calculating the vector product, we get
\(\vec{a}×\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&4&-5\\3&-1&2\end{vmatrix}\)
=\(\hat{i}(8-5)-\hat{j}(4-(-15))+\hat{k}(-2-12)\)
=\(3\hat{i}-19\hat{j}-14\hat{k}\)