Right option is (b) \(cos^{-1}\frac{11}{\sqrt{1598}}\)
Easy explanation: We know that, the angle between two planes of the form \(A_1 x+B_1 y+C_1 z+D_1\)=0 and \(A_2 x+B_2 y+C_2 z+D_2\)=0 is given by
cosθ=\(\left |\frac{A_1 A_2+B_1 B_2+C_1 C_2}{\sqrt{A_1^2+B_1^2+C_1^2} \sqrt{A_2^2+B_2^2+C_2^2}}\right |\)
Given that, \(A_1=6,B_1=-3,C_1=7\) and \(A_2=2,B_2=3,C_2=-2\)
cosθ=\(\left |\frac{6(2)-3(3)+7(-2)}{|\sqrt{6^2+(-3)^2+7^2} \sqrt{2^2+3^2+(-2)^2}|}\right |\)
cosθ=\(|\frac{-11}{\sqrt{94}.\sqrt{17}}|\)
θ=\(cos^{-1}\frac{11}{\sqrt{1598}}\).