The correct choice is (d) \(2\hat{i}-\hat{j}-\hat{k}\)
To elaborate: Given that, \(\vec{a}=-\hat{j}+\hat{k}\) and \(\vec{b}=-\hat{i}-\hat{j}-\hat{k}\)
Calculating the vector product, we get
\(\vec{a}×\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\0&-1&1\\-1&-1&-1\end{vmatrix}\)
=\(\hat{i}(1-(-1))-\hat{j}(0-(-1))+\hat{k}(0-1)\)
=\(2\hat{i}-\hat{j}-\hat{k}\)