Right choice is (a) θ=\(cos^{-1}\frac{20}{\sqrt{602}}\)
The explanation is: If two lines have the equations \(\vec{r}=\vec{a_1}+λ\vec{b_1} \,and \,\vec{r}=\vec{a_2}+μ\vec{b_2}\)
Then, the angle between the two lines will be given by
cosθ=\(\left |\frac{\vec{b_1}.\vec{b_2}}{|\vec{b_1}||\vec{b_2}|}\right |\)
=\(\left |\frac{(\hat{i}-2\hat{j}+3\hat{k}).(5\hat{i}-3\hat{j}+3\hat{k})}{\sqrt{1^2+(-2)^2+(3)^2).√(5^2+(-3)^2+3^2}}\right |\)
=\(\frac{5+6+9}{√14.√43}=\frac{20}{√602}\)
θ=\(cos^{-1}\frac{20}{\sqrt{602}}\)