Right option is (d) 5(e-1)
To explain I would say: I=\(\int_0^1 20x^3 e^{x^4}\) dx
Let x^4=t
Differentiating w.r.t x, we get
4x^3 dx=dt
∴The new limits
When x=0, t=0
When x=1,t=1
∴\(\int_0^1 \,20x^3 \,e^{x^4} \,dx=\int_0^1 5e^t dt\)
\(=5[e^t]_0^1=5(e^1-e^0)\)=5(e-1).