If L1 and L2 have the direction ratios \(a_1,b_1,c_1 \,and \,a_2,b_2,c_2\) respectively then what is the angle between the lines?
(a) \(θ=tan^{-1}\left|\frac{a_1 a_2+b_1 b_2+c_1 c_2}{\sqrt{a_1^2+b_1^2+c_1^2} \sqrt{a_2^2+b_2^2+c_2^2}}\right |\)
(b) \(θ=2tan^{-1}\left|\frac{a_1 a_2+b_1 b_2+c_1 c_2}{\sqrt{a_1^2+b_1^2+c_1^2} \sqrt{a_2^2+b_2^2+c_2^2}}\right |\)
(c) \(θ=cos^{-1}\left|\frac{a_1 a_2+b_1 b_2+c_1 c_2}{\sqrt{a_1^2+b_1^2+c_1^2} \sqrt{a_2^2+b_2^2+c_2^2}}\right |\)
(d) \(θ=2 \,cos^{-1}\left|\frac{a_1 a_2+b_1 b_2+c_1 c_2}{\sqrt{a_1^2+b_1^2+c_1^2} \sqrt{a_2^2+b_2^2+c_2^2}}\right |\)
The question was asked in an interview for internship.
Query is from Three Dimensional Geometry in chapter Three Dimensional Geometry of Mathematics – Class 12