The correct answer is (b) \(3e^x+2 \,logx+\frac{x^4}{4}+c\)
The explanation: To find \(\int \,3e^x+\frac{2}{x}+x^3 \,dx\)
\(\int \,3e^x+\frac{2}{x}+x^3 dx=3\int \,e^x \,dx+2\int \frac{1}{x} \,dx+\int x^3 \,dx\)
\(\int \,e^x \,dx=e^x\)
\(\int \frac{1}{x} dx=logx\)
∴\(\int 3e^x+\frac{2}{x}+x^3 \,dx=3e^x+2 \,logx+\frac{x^4}{4}+c\)