Correct choice is (b) \(\frac{π}{4}\)
The best I can explain: Let \(I=\int_1^{√3} \frac{3}{1+x^2}\)
F(x)=\(\int \frac{3}{1+x^2}dx\)
=3\(\int \frac{1}{1+x^2} \,dx\)
=3 tan^-1x
Applying the limits, we get
I=F(\(\sqrt{3}\))-F(1)
=3 tan^-1\(\sqrt{3}\)-3 tan^-11
\(3(\frac{π}{3})-\frac{3π}{4}=\frac{4π-3π}{4}=\frac{π}{4}\).