Correct answer is (b) \(\frac{8}{3}\) log2-5
To explain I would say: \(I=\int_0^1 logx.x^2 dx\)
F(x)=\(\int logx.x^2 dx\)
By using the formula \(\int u.v dx=u\int v dx-\int u'(\int v dx)\), we get
\(\int logx.x^2 \,dx=logx \int x^2 dx-\int (logx)’ \int \,x^2 dx\)
=\(\frac{x^3 logx}{3}-\int \frac{1}{x}.x^3/3 dx\)
∴\(F(x)=\frac{x^3 logx}{3}-\frac{x^3}{9}=\frac{x^3}{3} (logx-\frac{1}{3})\)
Hence, by using the fundamental theorem of calculus, we get
I=F(2)-F(1)
I=\(\frac{2^3}{3} \,(log2-\frac{2}{3})-\frac{1^3}{3} \,(log1-\frac{1}{3})\)
I=\(\frac{2^3}{3} \,log2-\frac{16}{3}+\frac{1}{3}\)
I=\(\frac{8}{3}\) log2-5