The correct option is (d) l^2-m^2=n^2-1
Explanation: Given that, a, b, c are the direction ratios of the line and l, m, n are the direction cosines of the line,
\(\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=k\) and l^2+m^2+n^2=1
⇒l=ak, m=bk, n=ck
(ak)^2+(bk)^2+(ck)^2=1
k^2 (a^2+b^2+c^2)=1
k^2=\(\frac{1}{a^2+b^2+c^2}\)
∴k=±\(\frac{1}{\sqrt{(a^2+b^2+c^2)}}\)
Hence, l^2-m^2=n^2-1 is incorrect.