Right choice is (d) l=\(\frac{2}{\sqrt{62}},m=-\frac{3}{\sqrt{62}},n=\frac{7}{\sqrt{62}}\)
Easy explanation: For a given line, if a, b, c are the direction ratios and l, m, n are the direction cosines of the line then
l=±\(\frac{a}{\sqrt{a^2+b^2+c^2}}\)
m=±\(\frac{b}{\sqrt{a^2+b^2+c^2}}\)
n=±\(\frac{c}{\sqrt{a^2+b^2+c^2}}\)
∴l=\(\frac{2}{\sqrt{2^2+(-3)^2+7^2}}, \,m=-\frac{3}{\sqrt{2^2+(-3)^2+7^2}}, \,n=\frac{7}{\sqrt{2^2+(-3)^2+7^2}}\)
Hence, l=\(\frac{2}{\sqrt{62}}, \,m=-\frac{3}{\sqrt{62}}, \,n=\frac{7}{\sqrt{62}}\).