Right answer is (c) \(\frac{1}{2} tan^{-1}\frac{x-4}{2}+C\)
Explanation: \(\int \frac{dx}{x^2-8x+20}=\int \frac{dx}{(x^2-2(4x)+4^2)+4}\)
=\(\int \frac{dx}{(x-4)^2+2^2}\)
Let x-4=t
Differentiating w.r.t x, we get
dx=dt
By using the formula \(\int \frac{dx}{x^2+a^2}=\frac{1}{a} tan^{-1}\frac{x}{a}+C\)
\(\int \frac{dx}{(x-4)^2+2^2}=\int \frac{dt}{t^2+2^2}=\frac{1}{2} tan^{-1}\frac{t}{2}+C\)
Replacing t with x-4, we get
\(\int \frac{dx}{(x-4)^2+2^2}=\frac{1}{2} tan^{-1}\frac{x-4}{2}+C\)