The correct answer is (c) 10 \( log|x+\sqrt{x^2-25}|+C\)
Best explanation: \(\int \frac{10 \,dx}{\sqrt{x^2-25}}=10\int \frac{dx}{\sqrt{x^2-25}}\)
By using the formula \(\int \frac{dx}{\sqrt{x^2-a^2}}=log|x+\sqrt{x^2-a^2}|+C\), we get
∴\(10 \int \frac{dx}{\sqrt{x^2-25}}=10 log|x+\sqrt{x^2-25}|+10C_1\)
=10 \(log|x+\sqrt{x^2-25}|+C\)